Transcriptomic evidence for the expression of horizontally transferred algal nuclear genes in the photosynthetic sea slug, Elysia chlorotica.

نویسندگان

  • Sidney K Pierce
  • Xiaodong Fang
  • Julie A Schwartz
  • Xuanting Jiang
  • Wei Zhao
  • Nicholas E Curtis
  • Kevin M Kocot
  • Bicheng Yang
  • Jian Wang
چکیده

Analysis of the transcriptome of the kleptoplastic sea slug, Elysia chlorotica, has revealed the presence of at least 101 chloroplast-encoded gene sequences and 111 transcripts matching 52 nuclear-encoded genes from the chloroplast donor, Vaucheria litorea. These data clearly show that the symbiotic chloroplasts are translationally active and, of even more interest, that a variety of functional algal genes have been transferred into the slug genome, as has been suggested by earlier indirect experiments. Both the chloroplast- and nuclear-encoded sequences were rare within the E. chlorotica transcriptome, suggesting that their copy numbers and synthesis rates are low, and required both a large amount of sequence data and native algal sequences to find. These results show that the symbiotic chloroplasts residing inside the host molluscan cell are maintained by an interaction of both organellar and host biochemistry directed by the presence of transferred genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptomic Evidence That Longevity of Acquired Plastids in the Photosynthetic Slugs Elysia timida and Plakobranchus ocellatus Does Not Entail Lateral Transfer of Algal Nuclear Genes

Sacoglossan sea slugs are unique in the animal kingdom in that they sequester and maintain active plastids that they acquire from the siphonaceous algae upon which they feed, making the animals photosynthetic. Although most sacoglossan species digest their freshly ingested plastids within hours, four species from the family Plakobranchidae retain their stolen plastids (kleptoplasts) in a photos...

متن کامل

Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica.

The sea slug Elysia chlorotica acquires plastids by ingestion of its algal food source Vaucheria litorea. Organelles are sequestered in the mollusc's digestive epithelium, where they photosynthesize for months in the absence of algal nucleocytoplasm. This is perplexing because plastid metabolism depends on the nuclear genome for >90% of the needed proteins. Two possible explanations for the per...

متن کامل

Genome Analysis of Elysia chlorotica Egg DNA Provides No Evidence for Horizontal Gene Transfer into the Germ Line of This Kleptoplastic Mollusc

The sea slug Elysia chlorotica offers a unique opportunity to study the evolution of a novel function (photosynthesis) in a complex multicellular host. Elysia chlorotica harvests plastids (absent of nuclei) from its heterokont algal prey, Vaucheria litorea. The "stolen" plastids are maintained for several months in cells of the digestive tract and are essential for animal development. The basis...

متن کامل

Mollusc/algal chloroplast symbiosis: how can isolated chloroplasts continue to function for months in the cytosol of a sea slug in the absence of an algal nucleus?

A marine sea slug, Elysia chlorotica, has acquired the ability to carry out photosynthesis as a result of forming an intracellular symbiotic association with chloroplasts of the chromophytic alga, Vaucheria litorea. The symbiont chloroplasts (kleptoplasts) are functional, i.e. they evolve oxygen and fix CO(2) and actively transcribe and translate proteins for several months in the sea slug cyto...

متن کامل

Update on Sea Slug Kleptoplasty and Plastid Maintenance in a Metazoan Sea Slug Kleptoplasty and Plastid Maintenance in a Metazoan1[W]

Trench (1969) was the first to characterize the kleptoplastic (i.e. “stolen plastid”) relationship between the sacoglossan mollusc Elysia chlorotica and its algal prey (Vaucheria litorea). In contrast to E. chlorotica, which retains only the plastids of the alga in densely packed digestive tissue (Fig. 1), aquatic invertebrates (e.g. corals, clams, worms, tunicates) and the recently reported sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 29 6  شماره 

صفحات  -

تاریخ انتشار 2012